Marijuana

States That Legally Regulate Medical and/or Adult Social Use of Marijuana

Related Chapters:
CBD (Cannabidiol)
Hemp
Marijuana Policy Reform - Decriminalization, Legalization, and Medicalization
Medical Marijuana
Driving

Looking for information on synthetic cannabinoids (e.g. "Kush," "spice," "K2," etc.)? Check our chapter on New Psychoactive Substances

Looking for specific, detailed information on cannabidiol (CBD)? In addition to the items below, check out Project CBD.

101. Cannabis and Psychosis

"Although individual lifetime risk of chronic psychotic disorders such as schizophrenia, even in people who use cannabis regularly, is likely to be low (less than 3%), cannabis use can be expected to have a substantial effect on psychotic disorders at a population level because exposure to this drug is so common."

Moore, Theresa H M; Zammit, Stanley; Lingford-Hughes, Anne; Barnes, Thomas R E; Jones, Peter B; Burke, Margaret; Lewis, Glyn, "Cannabis use and risk of psychotic or aff ective mental health outcomes: a systematic review," The Lancet (London, United Kingdom: July 28, 2007) Vol 370, p. 327.
http://www.ncbi.nlm.nih.gov...
http://www.thelancet.com...

102. Cannabis and Psychosis

"First, the use of cannabis and rates of psychotic symptoms were related to each other, independently of observed/non-observed fixed covariates and observed time dynamic factors (Table 2). Secondly, the results of structural equation modeling suggest that the direction of causation is that the use of cannabis leads to increases in levels of psychotic symptoms rather than psychotic symptoms increasing the use of cannabis. Indeed, there is a suggestion from the model results that increases in psychotic symptoms may inhibit the use of cannabis."

Fergusson, David M., John Horwood & Elizabeth M. Ridder, "Tests of Causal Linkages Between Cannabis Use and Psychotic Symptoms," Addiction, Vol. 100, No. 3, March 2005, p. 363.
http://www.ncbi.nlm.nih.gov...
http://www.csdp.org...

103. Cannabis and Psychosis

"The lead researcher in the Christchurch study, Professor David Fergusson, said the role of cannabis in psychosis was not sufficient on its own to guide legislation. 'The result suggests heavy use can result in adverse side-effects,' he said. 'That can occur with ( heavy use of ) any substance. It can occur with milk.' Fergusson's research, released this month, concluded that heavy cannabis smokers were 1.5 times more likely to suffer symptoms of psychosis that non-users. The study was the latest in several reports based on a cohort of about 1000 people born in Christchurch over a four-month period in 1977. An effective way to deal with cannabis use would be to incrementally reduce penalties and carefully evaluate its impact, Fergusson said. 'Reduce the penalty, like a parking fine. You could then monitor ( the impact ) after five or six years. If it did not change, you might want to take another step.'

Bleakley, Louise, "NZ Study Used in UK Drug Review," The Press (Christchurch, New Zealand), March 22, 2005.
http://www.mapinc.org...

104. Marijuana Use and Violent Behavior

"Laboratory studies also find no link between THC intoxication and violence. Most people who ingest THC before performing a competitive task in the laboratory do not show more aggression than people who receive placebos; occasionally they show decreased hostility. Numerous scientific panels sponsored by various governments invariably report that marijuana does not lead to violence.(751)"

Carter, Gregory T.; Earleywine, Mitchell; McGill, Jason T., "Exhibit B: Statement of Grounds," Rulemaking petition to reclassify cannabis for medical use from a Schedule I controlled substance to a Schedule II (Office of Lincoln D. Chafee, Governor Rhode Island and Office of Christine O. Gregoire, Governor of Washington: Letter to Michelle Leonhard, Administrator of the Drug Enforcement Administration, November 30, 2011), p. 38.
http://big.assets.huffingtonpost.com...

105. Early Use of Marijuana

"The younger and more often teens use marijuana, the more likely they are to engage in other substance use and the higher their risk of developing a substance use disorder. Among high school students, 7.5 percent used marijuana for the first time before the age of 13. CASA’s analysis of national data finds that the average age of initiation of marijuana use among high school students is 14.3 years old. Compared to those who began using marijuana after age 21, those who first used it before age 15 are:
• More likely to have ever smoked a cigarette (93.3 percent vs. 86.4 percent);
• More than twice as likely to have ever misused controlled prescription drugs (56.5 percent vs. 22.9 percent); and
• Two and a half times as likely to have ever used other illicit drugs (70.2 percent vs. 27.8 percent)."

"Adolescent Substance Abuse: America's #1 Public Health Problem," National Center on Addiction and Substance Abuse at Columbia University, June 2011, p. 27.
http://www.casacolumbia.org...

106. Prevalence and Perceived Risk From Marijuana Use Among Young People in the US

"Annual marijuana prevalence peaked among 12th graders in 1979 at 51%, following a rise that began during the 1960s. Then use declined fairly steadily for 13 years, bottoming at 22% in 1992—a decline of more than half. The 1990s, however, saw a resurgence of use. After a considerable increase (one that actually began among 8th graders a year earlier than among 10th and 12th graders), annual prevalence rates peaked in 1996 at 8th grade and in 1997 at 10th and 12th grades. After these peak years, use declined among all three grades through 2007 or 2008. After these declines, an upturn occurred in use in all three grades, lasting for three years in the lower grades and longer in grade 12. Annual marijuana prevalence among 8th graders increased in use from 2007 to 2010, decreased slightly from 2010 to 2012, and then declined significantly in 2016. Among 10th graders, use increased somewhat from 2008 to 2013 and then declined after that. Among 12th graders, use increased from 2006 to 2011 and then held level through 2016. As shown in Table 8, daily use increased in all three grades after 2007, reaching peaks in 2011 (at 1.3% in 8th), 2013 (at 4.0% in 10th), and 2011 (at 6.6% in 12th), before declining slightly since. Daily prevalence rates in 2016 were 0.7%, 2.5%, and 6.0%, respectively, with one in seventeen 12th graders smoking daily."

Johnston, L. D., O’Malley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2017). Monitoring the Future national survey results on drug use, 1975-2016: Overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan, p. 11.
http://monitoringthefuture.org...
http://monitoringthefuture.org...

107. Marijuana Use vs. Tobacco Use

"High school students are more likely to use marijuana than to smoke cigarettes. High school students are:
"• More likely to have tried marijuana than tobacco (24 percent vs. 15 percent); and
"• More likely to say their close friends use marijuana than smoke cigarettes (51 percent vs. 39 percent)."

QEV Analytics, LTD., "National Survey of American Attitudes on Substance Abuse XVII: Teens," The National Center on Addiction and Substance Abuse at Columbia University (New York, NY: National Center on Addiction and Substance Abuse at Columbia University, August 2012), p. 30.
http://www.casacolumbia.org...

108. Marijuana Use by Peers and Perception of Harm

"Teens also say they are seeing more peers in school smoking marijuana and more teens (73 percent) report having friends who smoke marijuana regularly (71 percent) – significantly higher than four years ago. Since 2008, there have also been significant declines in teen perceptions that they will lose respect, harm themselves, or mess up their lives if they use marijuana."

"The Partnership Attitude Tracking Study: 2011 Parents and Teens Full Report," MetLife Foundation and The Partnership at Drugfree.org (New York, NY: May 2, 2012), p. 7.
http://www.drugfree.org...

109. 12th Graders and Attitudes Toward Legalizing Marijuana

"• Table 8-8 lists the proportions of 12th graders in 2015 who favor various legal consequences for marijuana use: making it entirely legal (42%), a minor violation like a parking ticket but not a crime (27%), or a crime (15%). The remaining 15% said they 'don’t know.' It is noteworthy just how variable attitudes about this contentious issue are.
"• Asked whether they thought it should be legal to sell marijuana if it were legal to use it, about three in five (64%) said “yes.” However, about 86% of those answering 'yes' (55% of all respondents) would permit sale only to adults. A small minority (9%) favored the sale to anyone, regardless of age, while 23% said that sale should not be legal even if use were made legal, and 13% said they 'don’t know.' Thus, while the majority subscribe to the idea of legal sale, if use is allowed, the great majority agree with the notion that sale to underage people should not be legal.
"• Most 12th graders felt that they would be little affected personally by the legalization of either the sale or the use of marijuana. Over half (53%) of the respondents said that they would not use the drug even if it were legal to buy and use, while others indicated that they would use it about as often as they do now (14%) or less often (1%). Only 9% said they would use it more often than they do at present, while 13% thought they would try it. Another 11% said they did not know how their behavior would be affected if marijuana were legalized. Still, this amounts to 22% of all 12th graders, or about one in five, who thought that they would try marijuana, or that their use would increase, if marijuana were legalized."

Miech, R. A., Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2016). Monitoring the Future national survey results on drug use, 1975–2015: Volume I, Secondary school students. Ann Arbor: Institute for Social Research, The University of Michigan. Pages 397-398. Available at
http://monitoringthefuture.org...
http://monitoringthefuture.org...

110. Disapproval of Marijuana Use Among Youth in the US

"The proportion of students seeing great risk from using marijuana regularly fell during the rise in use in the 1970s, and again during the subsequent rise in the 1990s. Indeed, at 10th and 12th grades, perceived risk declined a year before use rose in the upturn of the 1990s, making perceived risk a leading indicator of change in use. (The same may have happened at 8th grade as well, but we lack data starting early enough to know.) The decline in perceived risk halted in 1996 in 8th and 10th grades; the increases in use ended a year or two later, again making perceived risk a leading indicator. From 1996 to 2000, perceived risk held fairly steady and the decline in use in the upper grades stalled. After some decline prior to 2002, perceived risk increased in all grades through 2004 as use decreased. Perceived risk fell after 2004 and 2005 in 8th and 12th grades respectively, (and since 2008 in 10th grade) presaging the more recent increase in use. In 2011 perceived risk continued to decline in grades 10 and 12 and leveled in grade 8."

Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2012). Monitoring the Future national results on adolescent drug use: Overview of key findings, 2011. Ann Arbor: Institute for Social Research, The University of Michigan, p. 12.
http://www.samhsa.gov...

111. Support for Legalized Sale of Marijuana in the US Among Youth, 2011

"Asked whether they thought it should be legal to sell marijuana if it were legal to use it, about three in five (62%) said 'yes.' However, about 80% of those answering 'yes' (51% of all respondents) would permit sale only to adults. A small minority (11%) favored the sale to anyone, regardless of age, while 28% said that sale should not be legal even if use were made legal, and 10% said they 'don’t know.'"

Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E., Monitoring the Future national survey results on drug use, 1975–2011: Volume I, Secondary school students," Institute for Social Research (Ann Arbor, Michigan: The University of Michigan, 2012), p. 379.
http://www.monitoringthefuture...

112. Cannabis and Adolescent Motivation

"The apparent strength of these relationships in cross-sectional studies (e.g. Kandel, 1984) has been exaggerated because those adolescents who are most likely to use cannabis have lower academic aspirations and poorer high school performance prior to using cannabis than their peers who do not (Newcombe and Bentler, 1988). It remains possible that factors other than the marijuana use account for apparent causal relations. To the extent they may exist, these adverse effects of cannabis and other drug use upon development over and above the effect of pre-existing nonconformity may cascade throughout young adult life, affecting choice of occupation, level of income, choice of mate, and the quality of life of the user and his or her children."

Hall, W., Room, R., & Bondy, S., WHO Project on Health Implications of Cannabis Use: A Comparative Appraisal of the Health and Psychological Consequences of Alcohol, Cannabis, Nicotine and Opiate Use August 28, 1995 (Geneva, Switzerland: World Health Organization, 1998).
http://www.druglibrary.net...

113. Thresholds for Serum THC Level Compared With Blood Alcohol Content

"Risk thresholds could be formulated only for THC which was the most prevalent illicit drug in the general driving population and in injured/killed drivers. The prevalence of THC across all countries that participated in DRUID is 1.37%. This is about one third of the alcohol prevalence. The epidemiological, the experimental and the meta-analytical approaches result in rather low risk estimations. Epidemiological case-control studies assess at maximum a 2.4-fold risk for injury, experimental studies and meta-analysis rank the risk between 0.5 and 2 times than that of sober driving. So THC seems to be much less impairing and risky than most of the other examined substances. Although a relationship between THC concentration and accident risk was found in the epidemiological studies, it was only possible to set an exact THC cut-off by a meta-analysis of experimental studies. Thereby it was found that the serum concentration of 3.8ng/mL THC (?2ng/mL in whole blood) causes the same amount of impairment as 0.5g/L alcohol. This value could be an empirical basis for a threshold discussion. The meta-analysis could also be used to define limits comparable to lower BAC levels."

Schulze, Horst, et al., "DRUID (Driving under the Influence of Drugs, Alcohol and Medicines) Final Report: Work performed, main results and recommendations," Project Funded by the European Commission under the Transport RTD Programme of the 6th Framework Program, Project No: TREN-05-FP6TR-S07.61320-518404-DRUID (Federal Highway Research Institute, Germany, Aug. 1, 2012), p. 84.
http://www.druid-project.eu...

114. Marijuana, Alcohol, and Driving

"As with cannabis, alcohol use increased variability in lane position and headway (Casswell, 1979; Ramaekers et al., 2000; Smiley et al., 1981; Stein et al., 1983) but caused faster speeds (Casswell, 1977; Krueger & Vollrath, 2000; Peck et al., 1986; Smiley et al., 1987; Stein et al., 1983). Some studies also showed that alcohol use alone and in combination with cannabis affected visual search behavior (Lamers & Ramaekers, 2001; Moskowitz, Ziedman, & Sharma, 1976). Alcohol consumption combined with cannabis use also worsened driver performance relative to use of either substance alone. Lane position and headway variability were more exaggerated (Attwood et al., 1981; Ramaekers et al., 2000; Robbe, 1998) and speeds were faster (Peck et al., 1986).
"Both simulator and road studies showed that relative to alcohol use alone, participants who used cannabis alone or in combination with alcohol were more aware of their intoxication. Robbe (1998) found that participants who consumed 100 g/kg of cannabis rated their performance worse and the amount of effort required greater compared to those who consumed alcohol (0.05 BAC). Ramaekers et al. (2000) showed that cannabis use alone and in combination with alcohol consumption increased self-ratings of intoxication and decreased self-ratings of performance. Lamers and Ramaekers (2001) found that cannabis use alone (100 g/kg) and in combination with alcohol consumption resulted in lower ratings of alertness, greater perceptions of effort, and worse ratings of performance."

Laberge, Jason C., Nicholas J. Ward, "Research Note: Cannabis and Driving -- Research Needs and Issues for Transportation Policy," Journal of Drug Issues, Dec. 2004, pp. 978.

115. Cannabis Use and Motor Vehicle Accident Risk

"Our primary analysis looked at the risk of a motor vehicle collision while under the influence of cannabis and included all nine studies (relating to 49 411 participants). The pooled risk of a motor vehicle collision while driving under the influence of cannabis was almost twice the risk while driving unimpaired (odds ratio 1.92 (95% confidence interval 1.35 to 2.73); P=0.0003); we noted heterogeneity among the individual study effects (I2=81%).
"We also assessed culpability and non-culpability studies separately and explored differences between motor vehicle collisions resulting in deaths and non-fatal injuries. Meta-analyses on subgroups of studies explored the potential effect of specific features related to study design and potential biases: case-control studies versus culpability studies, fatal collisions versus non-fatal collisions, and high quality studies versus medium quality studies (fig 3?).
"High quality studies had a pooled odds ratio that was higher than that for medium quality studies, although both results showed a significant association at the 0.05 level. Furthermore, case-control studies (2.79 (1.23 to 6.33); P=0.01) estimated the effect of cannabis use on crash risk to be higher than that estimated by culpability studies (1.65 (1.11 to 2.46); P=0.07). Studies of fatal collisions (2.10 (1.31 to 3.36); P=0.002) had a pooled odds ratio that was statistically significant, but studies of non-fatal collisions (1.74 (0.88 to 3.46); P=0.11) did not show significant results.
"In all studies assessing cannabis use in conjunction with alcohol, the estimated odds ratio for cannabis and alcohol combined was higher than for cannabis use alone, suggesting the presence of a synergistic effect."

Asbridge, Mark, et al., "Acute Cannabis Consumption and Motor Vehicle Collision Risk: Systematic Review of Observational Studies and Meta-analysis," British Medical Journal, 2012;344:e536 doi: 10.1136/bmj.e536 (Published 9 February 2012).
http://www.bmj.com...

116. Estimated Prevalence Of Substance Use Among Drivers In Fatal Auto Accidents

"Overall, 23,591 (90.9%) of the 25,951 drivers who died within 1 hour of a crash in these 6 states underwent toxicological testing. Drivers who were tested for drugs were similar in crash circumstances to those who were not tested, but they appeared to be slightly younger (mean age = 39.4 (standard deviation, 19.4) years vs. 43.4 (standard deviation, 27.7) years), more likely to be male (77.7% vs. 75.8%), more likely to be involved in nighttime crashes (51.4% vs. 47.0%), and more likely to have been involved in a crash in the previous 3 years (15.7% vs. 13.9%) than those who were not tested.
"Of the 23,591 drivers tested, 39.7% were positive for alcohol, and 24.8% tested positive for other drugs. The prevalence of alcohol involvement was stable at approximately 39% from 1999 to 2010 (Z = ?1.4, P = 0.16). Alcohol involvement was more prevalent in men (43.6%) than in women (26.1%), but trends were stable for both sexes (Table 1). In contrast, the prevalence of nonalcohol drugs showed a statistically significant increasing trend over the study period, rising from 16.6% (95% confidence interval (CI): 14.8, 18.4) in 1999 to 28.3% (95% CI: 26.0, 30.7) in 2010 (Z = ?10.19, P < 0.0001). The prevalence rates of non-alcohol drugs and 2 or more nonalcohol drugs increased significantly over the study period in both sexes (Table 1). The prevalence of nonalcohol drug use increased significantly across all age groups (Figure 1)."

Joanne E. Brady and Guohua Li. "Trends in Alcohol and Other Drugs Detected in Fatally Injured Drivers in the United States, 1999–2010." American Journal of Epidemiology. (2014) 179 (6): 692-699. doi: 10.1093/aje/kwt327.
http://aje.oxfordjournals.org/...

117. Cannabis Use, Alcohol Use, Smartphone Use, and Accident Risk

"Although for the mobile phone conversation and cannabis studies the reaction times were slightly different, they were still comparable. The same visual stimulus was used and was presented in the same visual scene. When reaction times under each condition were compared with the baseline reaction times measured, alcohol gave a 12.5% increase in reaction times, cannabis a 21% increase, a hands-free mobile phone conversation increased reaction times by 26.5%, texting by 37.4%, using a smartphone for social networking by 37.6% and using a mobile phone for a hand-held mobile phone conversation increased reaction times by 45.9% compared to the baseline condition. Thus, using a smartphone for social networking resulted in a greater impairment to reaction times than alcohol, cannabis, hand held mobile phone conversations and texting, but less than a hand held mobile conversation."

Basacik, D.; Reed N. & Robbins, R., "Smartphone use while driving: A simulator study," Institute of Advanced Motorists (London, United Kingdom: Transport Research Laboratory, 2011), pp. 37-38.
http://www.iam.org.uk...

118. Odds Of Involvement In Fatal Auto Accidents Associated With Use Of Various Substances

"The prevalence of drugs detected in cases was higher than in controls across the drug categories (Table 3). Marijuana, narcotics, stimulants, and depressants were each associated with a significantly increased risk of fatal crash involvement, with estimated odds ratios ranging from 1.83 for marijuana to 4.83 for depressants (Table 3). Polydrug use, defined as use of two or more non-alcohol drugs, was associated with a 3.4-fold increased risk of fatal crash involvement (Table 3).
"About one-fifth (20.5%) of the cases tested positive for alcohol and one or more drugs, compared with 2.2% of the controls. Relative to drivers who tested positive for neither alcohol nor drugs, the estimated odds of fatal crash involvement increased over 13 folds for those who were alcohol-positive but drug-negative, more than two folds for those who were alcohol-negative but drug-positive, and 23 folds for those who were positive for both alcohol and drugs (Table 4)."

Guohua Li, Joanne E. Brady, and Qixuan Chen. Drug use and fatal motor vehicle crashes: A case-control study. Accident Analysis and Prevention 60 (2013) 205–210.
http://dx.doi.org...
http://www.cuinjuryresearch.org...

119. Times for THC Absorption, Bioavailability, and Excretion

"Absorption is slower following the oral route of administration with lower, more delayed peak THC levels. Bioavailability is reduced following oral ingestion due to extensive first pass metabolism. Smoking marijuana results in rapid absorption with peak THC plasma concentrations occurring prior to the end of smoking. Concentrations vary depending on the potency of marijuana and the manner in which the drug is smoked, however, peak plasma concentrations of 100-200 ng/mL are routinely encountered. Plasma THC concentrations generally fall below 5 ng/mL less than 3 hours after smoking. THC is highly lipid soluble, and plasma and urinary elimination half-lives are best estimated at 3-4 days, where the rate-limiting step is the slow redistribution to plasma of THC sequestered in the tissues. Shorter half-lives are generally reported due to limited collection intervals and less sensitive analytical methods. Plasma THC concentrations in occasional users rapidly fall below limits of quantitation within 8 to 12 h. THC is rapidly and extensively metabolized with very little THC being excreted unchanged from the body. THC is primarily metabolized to 11-hydroxy-THC which has equipotent psychoactivity. The 11-hydroxy-THC is then rapidly metabolized to the 11-nor-9-carboxy-THC (THC-COOH) which is not psychoactive. A majority of THC is excreted via the feces (~65%) with approximately 30% of the THC being eliminated in the urine as conjugated glucuronic acids and free THC hydroxylated metabolites."

Couper, Fiona J., Logan, Barry K., et al., "Drugs and Human Performance Fact Sheets," (Washington, DC: National Highway Traffic Safety Administration, April 2004), p. 8.
http://www.nhtsa.gov...

120. Cannabis Use and Motor Vehicle Accident Risk

"We found only limited evidence to support the claim that cannabis use increases accident risk. Participants who had driven under the influence of cannabis in the previous year appeared to be no more likely than drug-free drivers to report that they had had an accident in the previous 12 months. Prima facie, this would seem to suggest that cannabis-intoxicated driving is not a risk factor for non-fatal accidents. In this sense, the results would support those of Longo et al. (2000b) who found no relationship between recent cannabis use and driver culpability for non-fatal accidents."

Jones, Craig; Donnelly, Neil; Swift, Wendy; Weatherburn, Don, "Driving under the influence of cannabis: The problem and potential countermeasures," Crime and Justice Bulletin, NSW Bureau of Crime Statistics and Research (Syndey, Australia: September 2005). p. 11.
http://www.lawlink.nsw.gov.au...

Pages