Driving, Drinking, and Drug Use

26. Prevalence of Substance Use Among Injured Drivers

"Studies of hospitalised, seriously injured car drivers were conducted in six countries, and studies of car drivers killed in accidents took place in four countries. Among the injured or killed drivers, the most commonly consumed substance was alcohol alone, followed by alcohol combined with another substance. The use of illicit drugs alone was not frequently detected. After alcohol, the most frequently found substance among injured drivers was tetrahydrocannabinol (THC) followed by benzodiazepines, whereas, among drivers killed in accidents, it was benzodiazepines."

European Monitoring Centre for Drugs and Drug Addiction, "Driving Under the Influence of Drugs, Alcohol and Medicines in Europe — findings from the DRUID project" (Luxembourg: Publications Office of the European Union, 2012), doi: 10.2810/74023, p. 6.
http://www.emcdda.europa.eu/at...

27. DRUID Project Evaluation of Oral Fluid (Saliva) Testing Devices for DUI Enforcement

"Using the above model of evaluation it can be seen that the DrugWipe 5 delivers the best results for sensitivity (91%) whilst also performing very highly in terms of specificity (95%). However the margins of error (95% confidence interval) displayed in Figure 43 show that this value could vary between 78-97%, this margin of error would seem to be due to the size of the study population (135 tests performed) since the device was only tested in Finland. The strong results for this device probably reflect largely on the device?s high performing individual amphetamines test in a country with a relatively high prevalence for amphetamines. However, this overall sensitivity is still higher than the individual sensitivity of the amphetamines test for DrugWipe 5 (87%) indicating that the device was successful in screening for other drugs. Both DrugTest 5000 and Rapid STAT also performed strongly in this evaluation both for sensitivity (85% and 82% respectively) and specificity (86% and 88% respectively), which is a reflection of their generally relatively good performance for each individual substance test. The sensitivity error margins are also somewhat narrower for these two devices that were tested on a greater number of subjects (220 and 342 tests performed respectively). The OrAlert device also performs at a high level of sensitivity (81%) in this evaluation, however the specificity is somewhat lower at 70% - which is the lowest score for any of the devices. The sensitivities of the other four devices included in the study range between 64% and 32%, which are quite low values. The specificities are, however, very high, or excellent, at between 93% and 100%. The relatively large error bars for the Oratect III device and BIOSENS can be attributed to the number of successful evaluations (58 and 25 respectively)."

Tom Blencowe, Anna Pehrsson and Pirjo Lillsunde, Editors. "Analytical evaluation of oral fluid screening devices and preceding selection procedures." Project Funded by the European Commission under the Transport RTD Programme of the 6th Framework Program, Project No: TREN-05-FP6TR-S07.61320-518404-DRUID (National Institute For Health and Welfare, Finland, Sept. 2010), pp. 93-94.
http://www.druid-project.eu/Dr...

28. DRUID Project Evaluation of Oral Fluid (Saliva) Testing Devices for DUI Enforcement

"It is disturbing that the sensitivities of the cannabis and cocaine tests were all quite low, although further testing of the cocaine tests is desirable due to the low prevalences and the low concentrations encountered in this study. There are several countries in Central and Southern Europe for which these two substance classes are of special interest. On the other hand, it seems the sensitivities of the devices are generally better for amphetamines, a frequently encountered drug class among the DUI drivers in the Nordic countries. The suitability of the device for the intended national DUI population should also be considered, for example, PCP is rarely, if ever, found in Europe, therefore at the current time utilising a PCP test is unnecessary. Since the on-site tests are relatively expensive the suitability of all the individual substance tests incorporated in the device should be considered.
"The evaluation showed that none of the evaluated tests is on a desirable level (>80% for sensitivity, specificity and accuracy) for all of the separate tests that they comprised. However, there were tests that performed already on a promising level for one or more substance classes. The DrugTest 5000 had the best overall results. The next best device was Rapid STAT, which performed at a similar level, except for the cocaine test which was somewhat less sensitive. Clearly the best device in terms of sensitivity for amphetamines was the DrugWipe 5."

Tom Blencowe, Anna Pehrsson and Pirjo Lillsunde, Editors. "Analytical evaluation of oral fluid screening devices and preceding selection procedures." Project Funded by the European Commission under the Transport RTD Programme of the 6th Framework Program, Project No: TREN-05-FP6TR-S07.61320-518404-DRUID (National Institute For Health and Welfare, Finland, Sept. 2010), p. 95.
http://www.druid-project.eu/Dr...

29. Testing for Drug Use by Drivers

"Evidence-gathering technology for drugs is not as advanced in terms of ease of use and noninvasiveness as it is for alcohol. Until recently, no simple test police officers could administer to obtain an indication of drug use similar to the preliminary breath test for alcohol has been available. Rather, samples of urine or blood typically must be sent away for laboratory analysis to determine the presence of drugs and their quantification. Screening tests using urine, which can be used by officers in the police station, have been field tested by NHTSA. The technology is also developing for using saliva, sweat, and hair samples to detect drug use (Hersch, Crouch, & Cook, 2000).
"As said earlier, NHTSA has funded the Drug Evaluation and Classification (DEC) program, which equips specially trained officers, known as Drug Recognition Experts (DREs), to observe and record behavioral evidence of drug use to assess potential drug impairment among persons suspected of drug-impaired driving, and guide chemical testing and expert testimony for DUID trials. Currently, more than 40 States have officially adopted DEC programs to train DRE personnel."

Lacey, John, Brainard, Katharine, and Snitow, Samantha. (2010). Drug Per Se Laws: A Review of Their Use in States. (DOT HS 811 317). Washington, DC: National Highway Traffic Safety Administration, pp. 5-6.
http://www.nhtsa.gov/staticfil...

30. Evaluation of Draeger DrugTest 5000 for Detecting Drugs Through Oral Fluid

"DrugTest 5000 screening results were evaluated against Quantisal confirmation data to determine TP [True Positive], TN [True Negative], FP [False Positive], FN [False Negative], diagnostic sensitivity and specificity, and efficiency at various cutoffs (Tables 1 and 2). When compared to THC alone, the diagnostic sensitivity and specificity and efficiency were 86.2%–90.7%, 75.0%–77.8%, and 84.8%– 87.9% at the 5-μg/L cutoff and 75.9%–92.7%, 76.0%–100.0%, and 78.8%– 86.4% at the 10-μg/L DrugTest 5000 cutoffs. Overall, the DrugTest 5000 performed better with the 5-μg/L screening cutoff, with diagnostic sensitivity and efficiency above the DRUID-recommended 80%. There were few FP and FN tests, and when they occurred, concentrations were at or near the confirmation cut-off. A limitation of this study was the inclusion of a small number of TN samples, only 6 –12 with the 5-μg/L DrugTest 5000 and 1- and 2-μg/L confirmation cutoffs, to adequately evaluate diagnostic specificity. On the basis of previous reports, more TN samples were expected over the 22-h collection period. Detection rates were highest and windows of detection were longest when we confirmed for THC alone (Fig. 1 and 2). However, the recent report of THC concentrations in OF following 3 h of passive exposure to cannabis smoke advocate for the inclusion of THCCOOH in confirmation criteria, because this analyte is not present in cannabis smoke and was not found in any OF [Oral Fluid] samples following passive exposure (18)."

Nathalie A. Desrosiers, et al., "On-Site Test for Cannabinoids in Oral Fluid," Clinical Chemistry, Oct. 2012, 58(10):1418-25.
http://www.ncbi.nlm.nih.gov/pu...
http://www.clinchem.org/conten...

Pages